
w
w

w
.i
n

l.
g

o
v
 

Advanced Testing for 
RELAP5-3D 

Dr. George Mesina 

RELAP5 International Users Seminar 

Date: Oct 23-24, 2012 



Introduction 

• Goal of Testing 

• Platforms 

• Language 

• Method 

• Results 



Goals of Testing 

• The ideal for testing: 

 To produce a bug-free computer code for use by the nuclear industry 

 

• The achievable goal for testing: 

 To find and fix every bug that INL’s Standard Test Suite can reveal 
before releasing a RELAP5-3D product. 

– To make a better product, more tests are continually added 

– Testing reveals error that must be resolved. 

– The cycle of testing, debugging, fixing and retesting is time-
consuming 

 

• The Project Goal for testing: To create better testing methodology 

– So it takes less time. Then it can be done more often. 

– So it allows test suite expansion with little time increase. 

 



RELAP5-3D Test Suites 

• The Standard Installation set is run before internal releases 

• Except for some “Additional Feature” tests, all tests are run before a 
product release. 

Test Suite Problems/Directories Cases 

Standard Installation Normal, Athena, Other 104 

Additional Feature Pvm, Extra, FlexWall, 

MError, MStable 

127 

DOE Requested Complex longer-running 

and DOE-specific cases 

35 

DA Set Developmental 

Assessment cases 

104 

DTSTEP Test Matrix PVM-DTSTEP interaction > 2000 



Computer Platforms 

• Current testing methodology for RELAP5-3D 

– Run collection of test cases in serial mode on Linux or Windows 
workstations. 

• Most platforms now have multiple cores 

– Running cases simultaneously on individual cores reduces testing 
time. 

• Massively parallel platforms can run many test cases simultaneously. 

– This has already been implemented with the DTSTEP Test Matrix 

– 3.5 hours on workstation decreased to 3.5 minutes on 7 nodes. 

• Takes longer when fewer nodes available. 



“Monty” Python Scripting Language 

• Python is a powerful scripting language used on the INL clusters. 

• It has many useful and powerful features (from their advertising): 

Feature Description 

Software 

quality 

Python’s focus is readability, coherence, and software 

quality. 

Developer 

productivity 

It boosts developer productivity many times beyond 

compiled languages. 

Program 

portability 

Most Python programs run unchanged on all major 

platforms. 

Support 

Libraries 

It comes with its standard library, a large collection or pre-

built & portable functionality. 

Component 

integration 

Python scripts can easily communicate with other parts of 

an application using a variety of integration mechanisms. 



Parallel Method: High-level Description 

• User collects test cases into staging area 

 

Python script does the following: 

• Create a list of all test cases in staging area 

• Divide list among compute nodes 

• On each node, form RELAP5-3D execution commands for the tests 

– Fray: When a core of the node becomes free, it runs the next 
command 

– Run in temporary storage (its faster) 

– Handle failures properly 

– Compare to previous run (if available) 

– Collect execution statistics 

• Collect information and report 



… 

… 

Parallel Testing 

• Nodes have 
12 to 32 
cores 

Copy or Gen 

Create List 

Run R5-3D Run R5-3D 

Divide List 

Node 1 Node N 

… 
… 

Copy or Gen 

Run R5-3D Run R5-3D 

Compare Compare … Compare Compare 

Collect Node 1 info Collect Node N info 

Collect & Report 

… 



How Testing Method Works 

• Invoke massive parallelism through the Portable Batch System (PBS) 

– The forkmap feature creates the fray 

• Python script BuildRunRep implements the method 

– Copies input files from staging area to a /tmp target directory 

– Also decompresses TGZ-files 

• It handles base case and restart runs separately 

– Special handling is required for restart cases 

 

 



Advantages of the New Method 

• The method expands to any number of test cases 

– Merely place test case directories in the staging area 

• Time required for entire test typically equals time for longest test case 

– The cases run in a fray. 

– Cores that run time-consuming cases seldom get second test case 

• Tested BuildRunRep on INL clusters 

– In serial on Eos (Dell, 256GB, 3 nodes, 72 cores) 

– In parallel on Quark (Intel Xeon, 32 24-GB nodes, 12cores/node) 

• Recent test on Quark 

– 2300 runs done in 9 minutes 

– Longest single run just over 8 minutes 



Usage on Cluster 

• Create “staging area” directory 

– Put in original copies of necessary files: 

– relap5.x, fluid files, subdirectories of input files, testing scripts 

• Clean out temporary storage working area: /tmp/relap/ 

• Load all necessary enclave modules 

– Python, PBS, and PVM (if testing the coupling) 

• Select the number of nodes for the test. Typically 

– 7 nodes for DTSTEP test matrix 

– 3 nodes for the rest 

• Submit the run via PBS 

 



Conclusions 

• A new method for testing RELAP5-3D on numerous test cases has 
been devised 

• The method will expand to any number of test cases 

• The amount of time it takes to run the longest test case is typically the 
time required for the entire suite 

• This has been implemented and tested on the INL cluster 

 


